

- SEPARATION TECHNIQUES FOR CDW – BEST PRACTICE

- DEVELOPMENT OF A SEPARATION PROCESS FOR GYPSUM-CONTAMINATED CONCRETE AGGREGATES

- ALTERNATIVE SEPARATION TECHNIQUE FOR CDW – OPTOELECTRONIC SEPERATION

Schnellert, T.; Mueller, A.

Bauhaus - University Weimar, Chair of Mineral Processing of Building Materials and Reuse, Germany

Overview about separation techniques

dry processes	wet processes
separation by density	separation by density
– air classifier	 upcurrent sorter
 screening/wind sifting combina- tions 	 thin film separation
– air jig	 float-and sink-separation
	– water jig
separation by magnetic or electric properties	separartion by wettability surfa- ce properties
 macnetic separation 	- flotation
- separation by el. conductivity	
separation by optical properties	
 optoelectronic separation 	
 separation by color 	
– hand-picking	
 separation by particle shape or size 	

Sorting: separation of a material mixture according to type of material using physical characteristics

Distinction of the sorting process

- according to the used features
- in dry and wet processes
- to the task in the process sequence

In recycling plants is the sorting

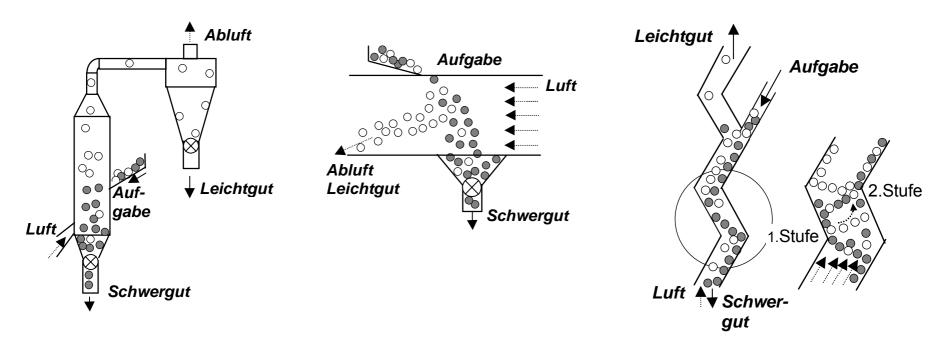
- the removal of foreign materials
- the separation of the components

Sorting cases are almost exclusively found in stationäry recycling plants.

Professur Aufbereitung von Baustoffen und Wiederverwertung

- SEPARATION TECHNIQUES FOR CDW – BEST PRACTICE

dry processes

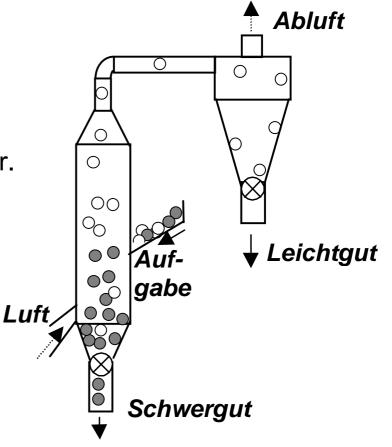


Techniques for dry separation by density

vertical air classifier

horizontal air classifier

zigzag air classifier

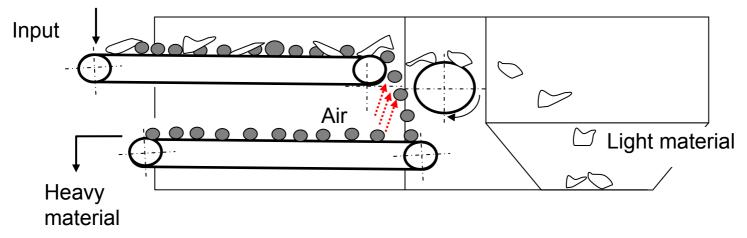

Techniques for dry separation by density

Vertical air classifier

Operation

In the air classification the fraction is given from the side in the process space. The separation is effected by the upward flow of air.

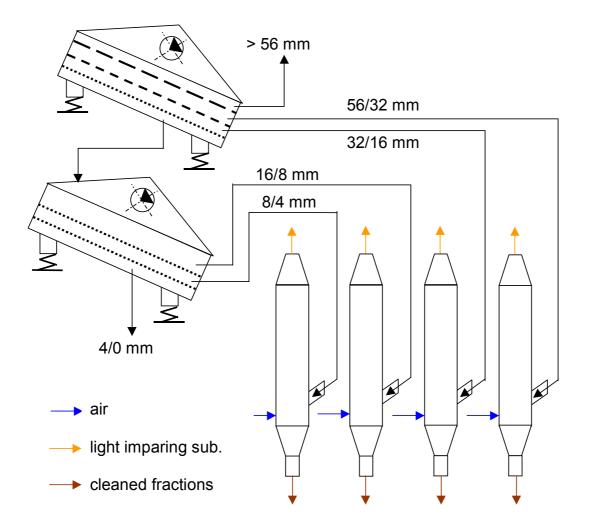
The light materials, for example wood or plastic parts are deposited in a filter.



Techniques for dry separation by density

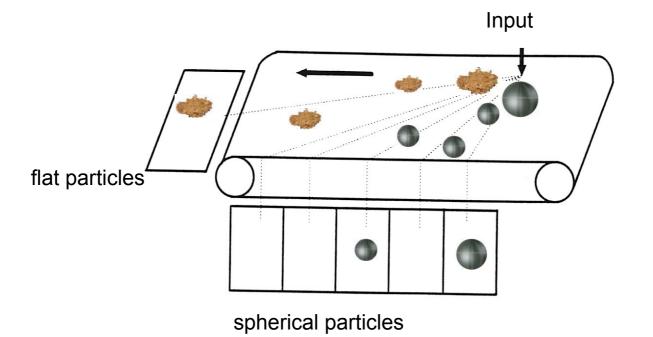
Air classifier combined with conveyor belt

Operation


The material is transported along a wide, horizontal conveyor belt to separation of the particles. At the discharge edge, the material flows through a directed air flow from a slot. The light material is carried along by the air stream and by support from the rotating drum transported into the expansion space. The heavy is unaffected by the air stream on the discharge conveyor and is transported away.

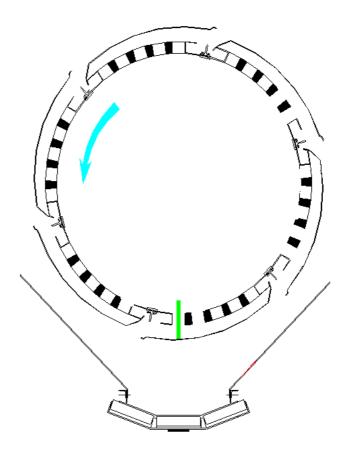
Techniques for dry separation by density

Combination of screening/air classifying in CDW recycling


Kellerwessel 1993

Techniques for dry separation by particle shape

Techniques for dry separation by particle shape


? jerking table ?

Techniques for dry separation by particle shape

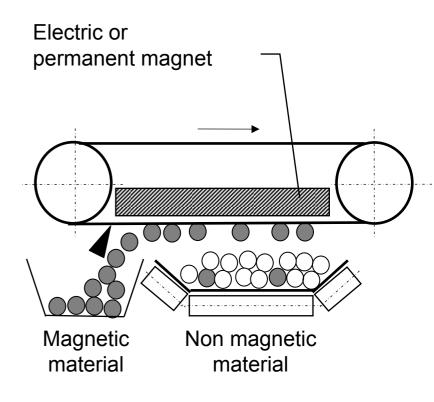
3D-Sorting drum

Quelle: Jarno Busschers Busschers Staalwerken B.V., NL

Techniques for dry separation by particle shape

3D-Sorting drum

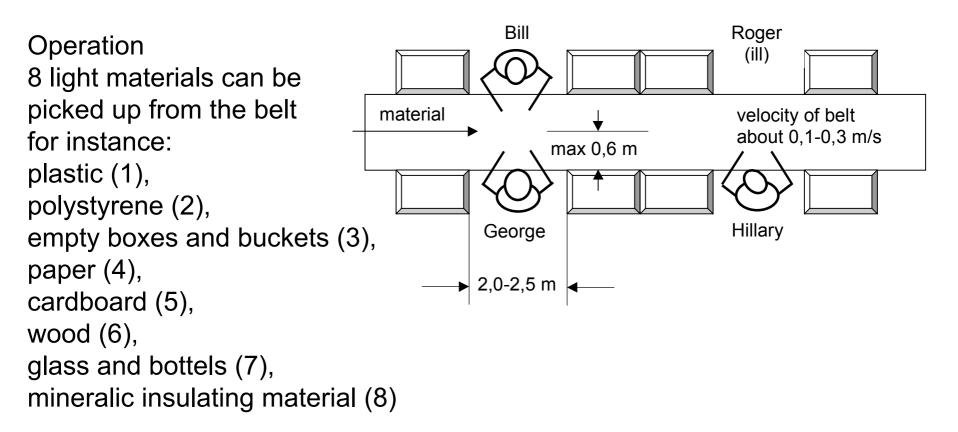
Quelle: Jarno Busschers Busschers Staalwerken B.V., NL

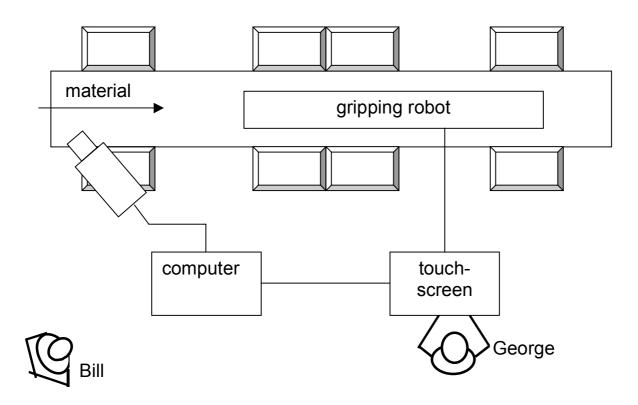


Techniques for dry separation by magnetic or electric proberties

Over band magnetic separator

Operation


A conveyor belt with magnets, which usually is perpendicular to the direction, remove coarse magnetic components out of the materials.


Techniques for dry separation by optical properties

Picking belt

Picking with sorting robot

Professur Aufbereitung von Baustoffen und Wiederverwertung

- SEPARATION TECHNIQUES FOR CDW – BEST PRACTICE

wet processes

Parameter for wet processing

1. Density for separation

- Upcurrent Sorter
- Thin-film Separation
- Water Jig
- $q = \frac{\rho_{H} \rho_{Fl}}{\rho_{L} \rho_{Fl}}$

 $\rho_{\rm H}$: density of heavy component

- $\rho_{\rm L}$: density of ligh component
- $\rho_{\rm FI}$: density of fluid

- ≈ 1400 kg/m³ ≈ 1400 kg/m³
- sharpness of division increases with increasing q, materials with finer particles can be treated
- q < 1,5 division not possible
- q > 1,5 division for particle size
 - > 2 mm possible

Parameter for wet processing

2. Quality of separation

- content of impairing substances after separation < 1 mass-%
- water soluble substances and fine particles < 0.063 µm can also be reduced by wet separation
- water content of output after dewatering about 10 mass-%

Parameter for wet processing

3. Comparison

- water circuit and waste water treatment necessary, sludge often contains hazardous components

- in stationary facilities possible

	Capacity [t/h]	Particle size [mm]	Amount of water [m ³ /h]
Upcurrent sorter	50 bis 150	4/32	50 bis 100
Thin-film separator	120 bis 180	4/80	250
Water jig (pulsa- tion by air pres- sure)	120	0/32	290
Water jig (pulsa- tion by vibration)	160	0/40	ca. 100

Heavy material

Techniques for wet separation by density

Float-and-sink separator: light product separator

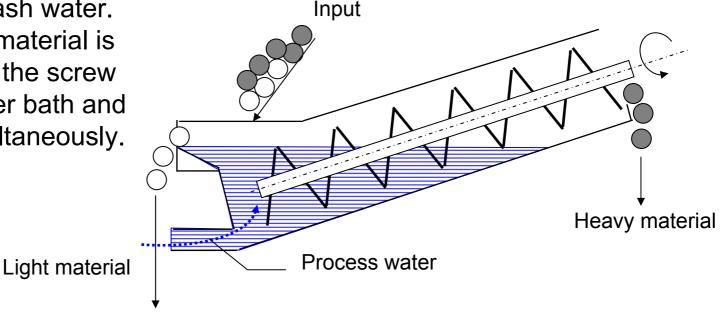
Operation

The material to be cut is fed into the container. Input The heavy material falls to the ground and is discharged via a conveyor belt. The light material is removed by a separate conveyor belt.

Light

material

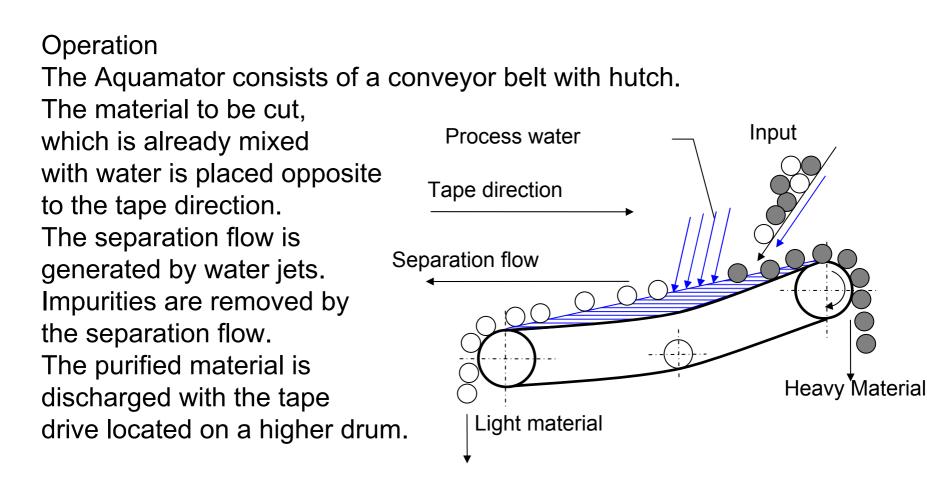
Techniques for wet separation by density


Screw-type upcurrent sorter

Operation

The material to be cut is introduced at the end of the screw in the water tank. The screw mixes the material and breaks it up.

The contaminants are transported

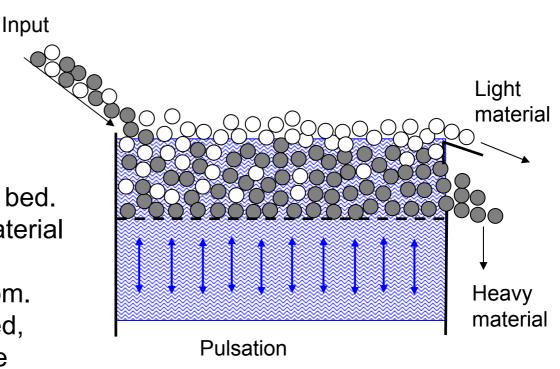

by flowing wash water. The purified material is conveyed by the screw from the water bath and drained simultaneously.

Techniques for wet separation by density

Thin film separation:aquamator

Techniques for wet separation by density

Pulsator jig

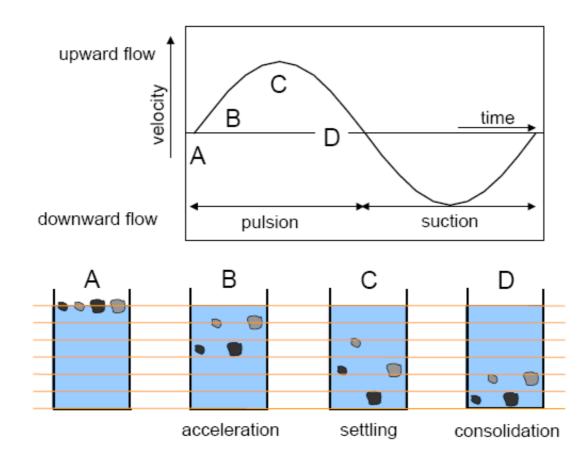

Operation

In a layer from material, the heavy grains separate from the lightweight grains, as they are lifted

up by an upward pulsating fluid flow.

A stratification according to density takes place. The material to be cut is conveyed through the jig bed. At the end of the jig bed material with higher density is concentrated at the bottom.

As fluid mainly water is used, but this is influenced by fine materials in its density.



Techniques for wet separation by density

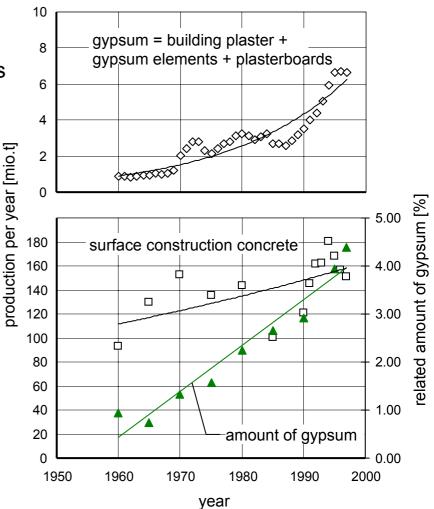
Pulsator jig

Phenomena during an idealised jigging process

ing

Bauhaus-Universität Weimar

Pulsator jig for separation gypsum from concret aggregates



- DEVELOPMENT OF A SEPARATION PROCESS FOR GYPSUM-CONTAMINATED CONCRETE AGGREGATES

• Motivation

- Use of gypsum building materials in all types of buildings increases
- Selective demolition does not take place because of either economic reasons or technical reasons
- Recycled aggregates containing gypsum can not be used

Initial situation

- Objective of the research project: Separation of the gypsum from the rubble of demolished apartments of precast concrete
 - Example for a building made of precast concrete slabs containing gypsum in bathroom element and in floors
 - Composition of the demolished material
 - calculation:

Gypsum content in building materials:

- 3.1 m-% from the floor
- 6.6 m-% floor + bathroom element [Mettke, A.; et al..: Technical University Cottbus, Cottbus 2008]
- experimental:

	average	standard deviation	variation coefficient	min	max
	[ma	ss-%]	[%]	[mass-%]	
concrete and gravel	93.75	1.70	1.81	90.49	95.39
brick	2.85	1.59	55.73	1.20	6.18
gypsum	2.73	1.11	40.52	1.80	5.35
foreign materials	0.65	0.21	31.63	0.36	0.96

- Effect of the gypsum in unbound layers and in concrete
 - Heaving, expansion and strain softening due to:
 - formation from ettringite
 - formation from thaumasit
- $3 \text{ CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3 \text{ CaSO}_4 \cdot 32 \text{ H}_2\text{O}$
 - $CaSiO_3 \cdot CaCO_3 \cdot CaSO_4 \cdot 16 H_2O$
- Leach out of sulfate and contamination of the ground and the ground water
- Requirements on C&D aggregates

	composition	leachable sulfate
DIN 4226-100 (Type 1: concrete aggregates)	gypsum < 0.2 M-%	< 0.8 M-%
TL Gestein-StB	group "mineral lightweight materials, mineral wool" < 1.0 M-%	no requirements
LAGA	no requirements	600 mg/l in eluate

• Consequence:

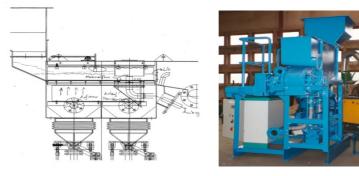
In current building regulation (DIN 4226-100, TL-Gestein StB, LAGA) the use of recycled aggregates made of CDW from apartment buildings without separation of gypsum is not allowed.

• Intention:

Development of a separation process for gypsum-contaminated concrete aggregates based on a modification of the jigging technology

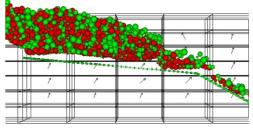
Why a modification of the jigging technology?

• Challenge for the jigging technology:

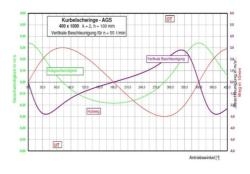

Small differences of the densities of concrete and gypsum

Quotient of bulk density for evaluation the separation of concrete and gypsum					
	bulk density	bulk density	quotient of separation		
	OD	SSD ¹		OD	SSD
	[g/cm³]	[g/cm³]			
gypsum from bath- room element	1.55	1.88	concrete A – gyp. bathroom	2.60	1.70
gypsum from floor	1.90	2.08	concrete A – gypsum from floor	1.59	1.39
concrete A	2.43	2.50	precast concrete - gypsum bathroom	2.25	1.57
precast concrete	2.24	2.38	precast concrete - gypsum from floor	1.38	1.28
¹ : calculated by full water impregnation					

q < 1.5 separation by jigging is not possible γ



- Development, construction and test of the modified jigging machine
 - Development of jigging technology (experimental device "Triple A")


www.AGSEngine.de

 Process simulation by Software Particle Flow Code (PFC)

www.iff-weimar.de

 Modification of the pulsation diagram

www.iff-weimar.de

• Technical implementation

• Experimental equipment at the recycling plant

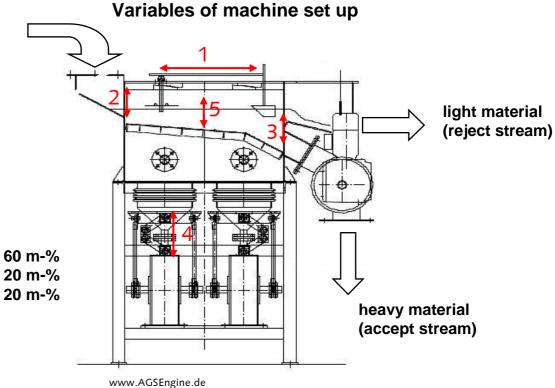
• Experimental equipment at the recycling plant

• Overview of all experiments

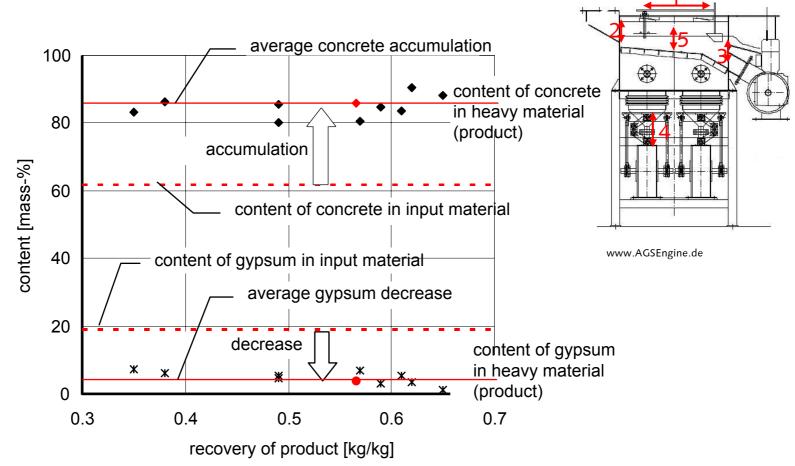
Test	parameter			
	machine set up			
V 1				
V 2	mixture [mass-%]			
V 3	concrete A + brick + gypsum bathroom			
V 4	60 + 20 + 20			
V 5				
	influence of particle size			
V 6	mixture [mass-%] concrete A + brick + gypsum bathroom 60 + 20 + 20			
influence of repeated treatment				
V 7	mixture [mass-%] concrete A + brick + gypsum bathroom 60 + 20 + 20			

Test	parameter		
con	concrete with variable contents of gypsum		
V 8	concrete A – gypsum bathroom		
V 9	concrete A – gypsum from floor		
	quality of concrete		
V 10	mixture concrete A – concrete B		
r	nixtures from precast concrete slabs		
V 11	precast concrete slabs material 4/45 mm		
V 12	masonry aggregates		
V 13	gypsum aggregates		
V 14	precast concrete slabs material 0/63 mm		
V 15	gypsum aggregates		

• Analysis

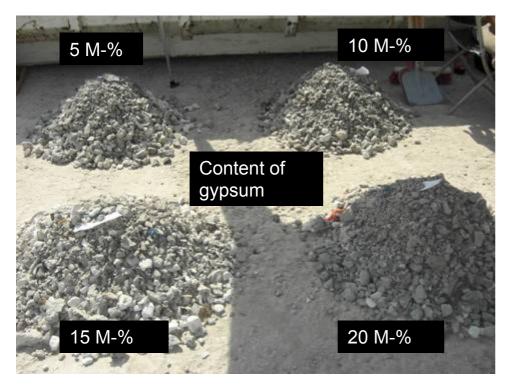

Results of investigations

• Influence of machine set up



concrete60 m-+ brick20 m-+ gypsum from bathroom element20 m-

• Influence of machine set up



Content of concrete and gypsum after the jigging in dependence on recovery of product for different machine set up

• Influence of content of gypsum and type of gypsum

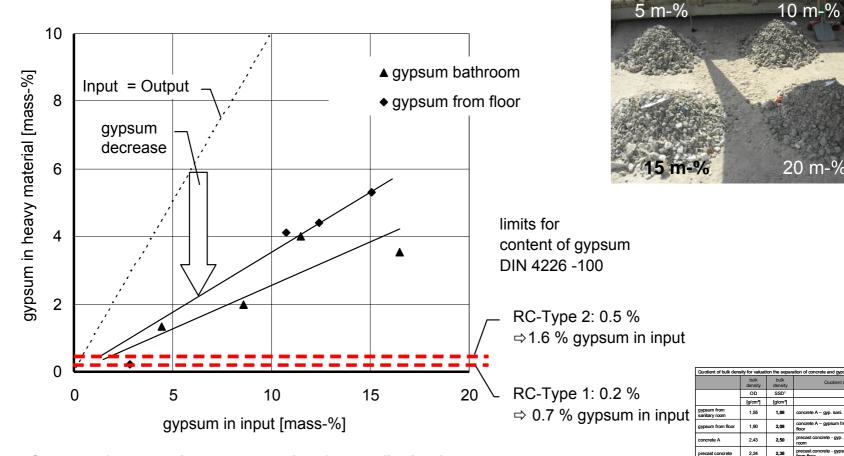
• Content of gypsum

mixture I – IV

concrete A	95 - 80 m-%
+ gypsum from bathroom element	5 - 20 m-%
mixture V – VIII	
concrete A	95 - 80 m-%
+ gypsum from floors	5 - 20 m-%

content of gypsum

00 550


1,59 1,39

2,25 1,57

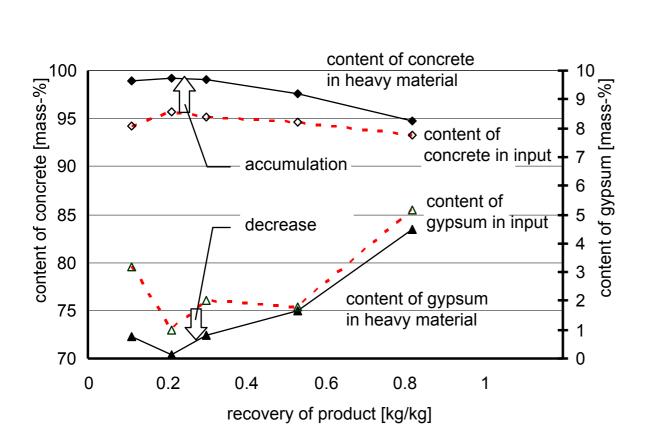
1,38 1,28

· calculated by full water impregnati

1,70

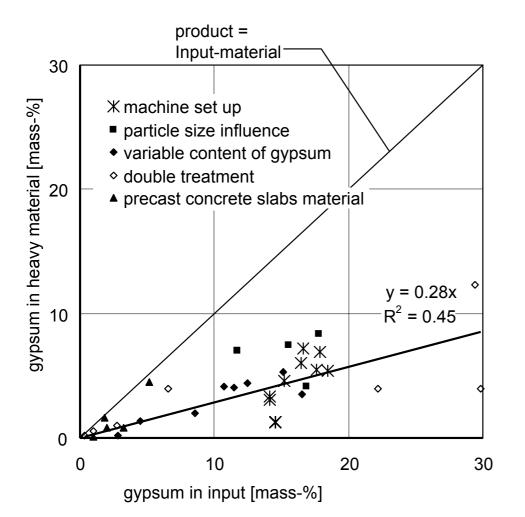
• Influence of content of gypsum and sort of gypsum

Content of gypsum in heavy material after the jigging in dependence on the content of the input material



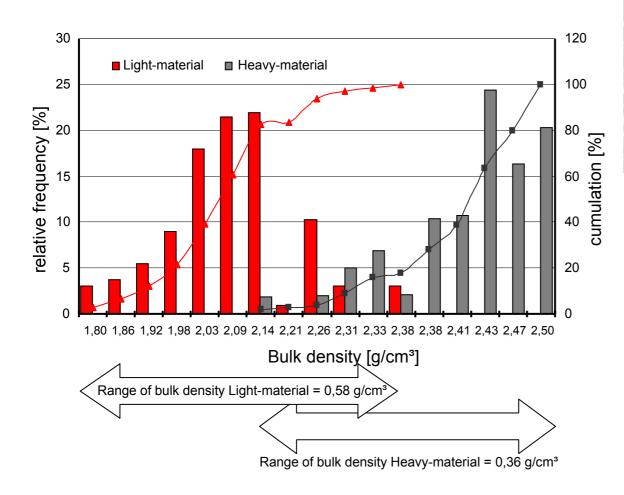
• Separation of mixtures from precast concrete slabs

precast concrete slabs	4/45 mm
concrete and gravel brick	93.75 M-% 2.85 M-% 2.73 M-%
gypsum foreign materials	0.65 M-%



Content of concrete and gypsum after the jigging in dependence on recovery of product

• Summarizing of selected results



comparison content of gypsum in input versus content of gypsum in product

• Results concrete – gypsum – separation

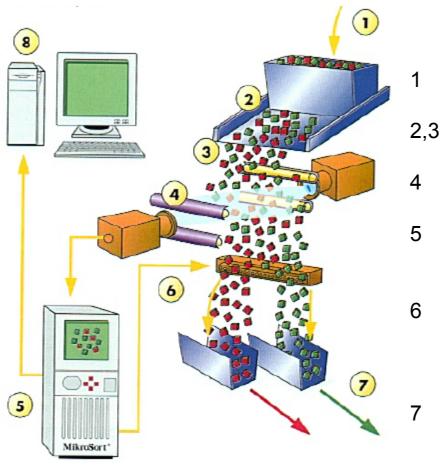
• Results concrete – gypsum – separation

• Separation of mixtures from precast concrete slabs in several steps

Change of content of precast concrete slabs material after the jigging							
	average min max						
	gypsum [mass-%]						
Content in Input-material	2.7 1.8 5.4						
single treatment	e treatment 0.8 0.5						
double treatment	0.2	0.4					
	concrete [mass-%]						
Content in Input-material	93.8	90.5	95.4				
single treatment	99.0	97.4	99.8				
Double treatment	100	100	100				

Calculated content of gypsum and concrete after single treatment and double treatment of the jig.

• Conclusions


- Recycled aggregates produced of CDW from apartment buildings made of precast concrete slabs contain a high content of gypsum.
- The separation of gypsum is necessary for the reuse of the Recycled-Concrete-Aggregates as new concrete aggregate or in road construction
- In experiments was detected, that the gypsum can be separated from concrete aggregates by a jigging processes although the differences in density are rather small.
- The content of gypsum in the input material of 2.7 mass-% is reduce
 - to 0.8 m-% by single treatment
 - to 0.2 m-% by double treatment
- The recovery of the product amounts between
 - 50 % at a content of gypsum in the input of 20 mass-%
 - and 85 % at a content of gypsum in the input of 5 mass-%
- There are further quality improvements of the RCA as a result of the jigging process:
 - An increase of bulk density of the product compared to the input-material
 - A coarser particle size distribution of the product compared to the input-material

- ALTERNATIVE SEPARATION TECHNIQUE FOR CDW – OPTOELECTRONIC SEPERATION

Optoelectronic separation

Bauhaus-Universität Weimar

product flow over a width of 1200 mm

- dropping into a free fall
- pass a CCD color line camera
 - state-of-the-art signal-processor, indentification of 8000 objects per second
 - separation by compressed-air pulses from 256 jets with dosed compressed-air pulses depending on grain size

conveyer belt for product flow and reject flow

Frequentz (Hz)	Name der Strahlung	Optoelec	Optoelectronic separation				
10 ²⁴ 10 ²⁹	Kosmische Strahlung	Spectra	Application				
10 ²² 10 ²¹ 10 ²⁰ 10 ¹⁹ 10 ¹⁸ 10 ¹⁷	Gamma-Strahlung Röntgen-Strahlung	X-ray (roentgen)	Battery sorting Processing of industrial minerals, Metals of different density				
10 ¹⁶ 10 ¹⁵ 10 ¹⁴ 10 ¹³ 10 ¹² 10 ¹¹	Infrarot Mikrowellen	Visible light	Separation of metals such as brass and bronze, Sorting glass, paper processing, sorting of industrial minerals				
106	Kurzwelle Mittetwelle Langwelle	Near-infrared (NIR)	Plastic sorting (LVP), PET processing, Wood from bulky refuse				
100 10 1	Ninclastranquartister						

www.schule.de

• Concrete and red brick mixtures

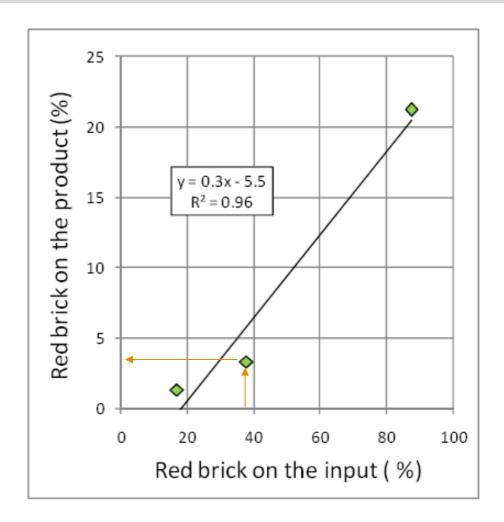
Sample 13,14,15 are mixtures of concrete and red brick

	Sample	C (concrete)	B (red brick)	Total
13	Mass [grams]	11,866	2,443	14,309
13	Content [%]	82.9	17.1	100.0
14	Mass [grams]	9,568	5,785	15,353
14 –	Content [%]	62.3	37.7	100.0
15	Mass [grams]	1,911	13,665	15,576
15	Content [%]	12.3	87.7	100.0

• Concrete and red brick mixtures

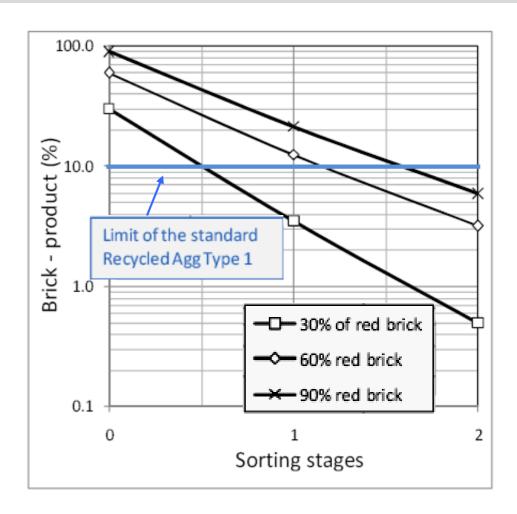
Sorting Results

 $Purity(\%) = \frac{mass_{gypsum, accept}}{mass_{total, accept}} \times 100$ $Recovery(\%) = \frac{mass_{accept}}{mass_{input}} \times 100$


		Sample 13			Sample 14			Sample 15		
		Input	Accept	Reject	Input	Accept	Reject	Input	Accept	Reject
Concrete	[g]	11,866	11,686	180	9,568	9,220	348	1,911	1,565	346
Red brick	[g]	2,443	155	2,288	5,785	312	5,473	13,665	422	13,243
Red brick	[%]	17.1	1.3	92.7	37.7 -	3.3	94.0	87.7	→ 21.2	97.5
Purity	[%]	82.9	98.7		62.3	96.7		12.3	78.8	
Mass recovery	[%]		82.8	17.2		62.1	37.9		12.8	87.2

Concrete

 and
 red brick
 mixtures



Concrete
 and
 red brick
 mixtures

• Gypsum composites and Mixed C&DW aggregates mixtures

Sample 10,11,12 are mixtures from Gypsum composites and Mixed C&DW

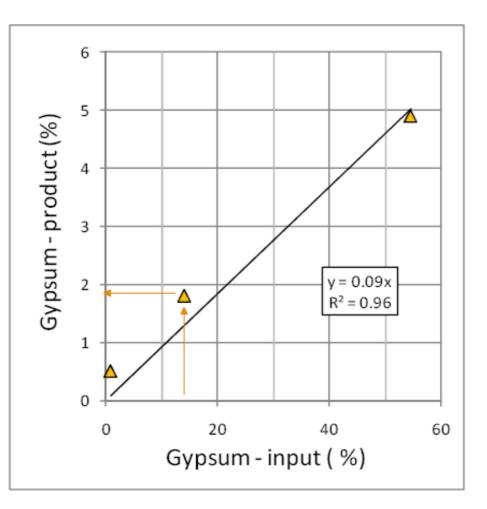
aggregates

San	ıple	GP	GW	GA	GP+GW	XA	Total
		(gypsum+	(gypsum+	(gypsum+	+GA	(recycled	
		paper)	wood)	nat. agg.)		aggregate)	
10	Mass [g]	68.7	68.7	68.6	206	22,364	22,570
	Content [%]	0.3	0.3	0.3	0.9	99.1	100.0
11	Mass [g]	1,508.7	1,508.7	1,508.6	4,526	27,537	32,036
	Content [%]	4.7	4.7	4.7	14.1	85.9	100.0
12	Mass [g]	3,125.7	3,125.7	3,125.6	9,377	7,788	17,165
	Content [%]	18.2	18.2	18.2	54.6	45.4	100.0

• Gypsum composites and Mixed C&DW aggregates mixtures

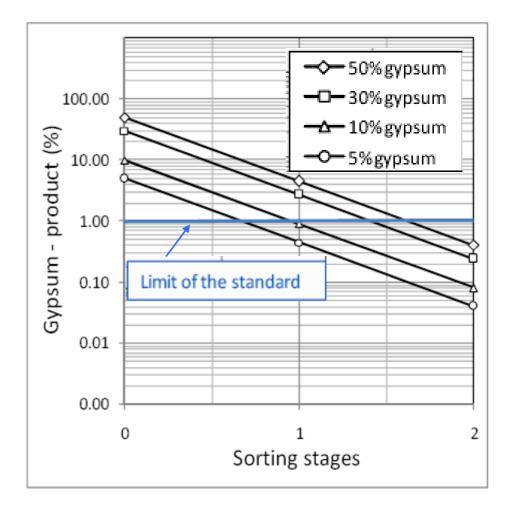
Sorting Results

 $Purity(\%) = \frac{\text{mass}_{gypsum, accept}}{\text{mass}_{total, accept}} \times 100$ $Recovery(\%) = \frac{\text{mass}_{accept}}{\text{mass}_{input}} \times 100$


		Sample 10			Sample 11			Sample 12		
		Input	Accept	Reject	Input	Accept	Reject	Input	Accept	Reject
Gypsum	[g]	206	101	105	4526	490	4,036	9,377	357	9,020
Recycled Aggregate	[g]	22,364	22,159	205	27,537	26,280	1,257	7,788	6,895	893
Gypsum	[%]	0.9 —	▶ 0.5	33.9	14.1 -	→ 1.8	76.2	54.6 -	→ 4.9	91.0
Purity	[%]	99.1	99.5		85.9	98.2		45.4	95.1	
Mass recovery	[%]		98.6	1.4		83.5	16.5		42.2	57.8

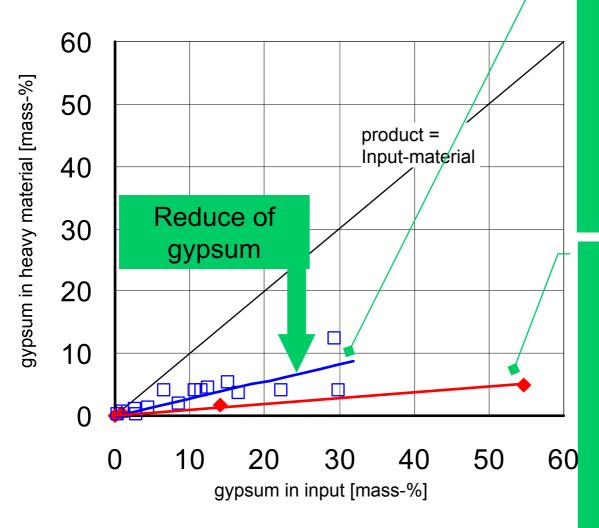
Professur Aufbereitung von Baustoffen und Wiederverwertung

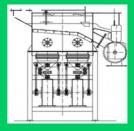
Gypsum
 composites
 and Mixed
 C&DW
 aggregates
 mixtures



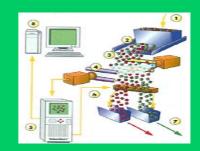
Professur Aufbereitung von Baustoffen und Wiederverwertung

Gypsum
 composites
 and Mixed
 C&DW
 aggregates
 mixtures



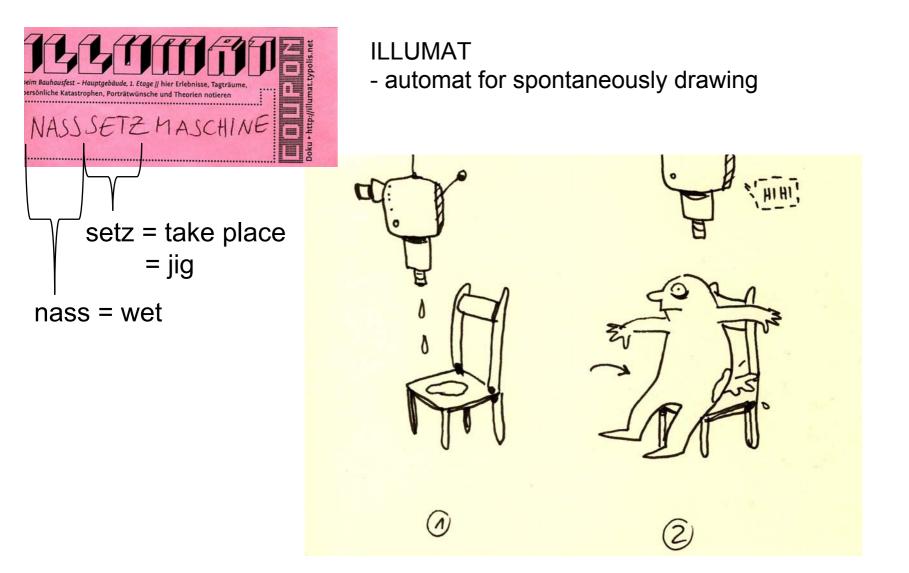

Conclusion

- Gypsum will increase in C&DW aggregates in future demand of separation
- Automatic optical sorting is suitable to separate gypsum and brick particles from concrete particles
- High concentration of gypsum and red brick in the input material can require two stages of processing
- Gypsum separation can be combined with red brick sorting
- The quality of C&DW aggregates can be improved significantly by automatic optical sorting



• Comparison concrete – gypsum – separation

Jiging: Amount of gypsum in product = 0,274*gypsum in Input


Optical sorting: Amount of gypsum in product = 0,092*gypsum in Input

The sorting process must be selected under consideration of the parameters of the components to be separated. The following selection parameters are important:

- Composition of the material
- Quality requirements for the product
- Material characteristic such as density, magnetic properties ...
- Particle size
- Plant concept
- Amount of material

Thank you for your attention !

http://www.uni-weimar.de/Bauing/aufber/